Πανελλήνιες ΑΕΠΠ – Πίνακες 1Δ


ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ
Μ
ΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Ε
ΝΟΤΗΤΑ: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ – ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ – ΕΠΙΠΕΔΟ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Θέμα 3οΘέμα 3ο
 



  • Δίνεται μονοδιάστατος μη ταξινομημένος πίνακας Τ με Ν διαφορετικά στοιχεία. Να γράψετε τον αλγόριθμο σειριακής αναζήτησης της τιμής μιας μεταβλητής key στον πίνακα Τ.

      Μονάδες 10

     



    • Δίνονται η έκταση, ο πληθυσμός και το όνομα καθεμιάς από τις 15 χώρες της Ευρωπαϊκής ΄Ενωσης. Να αναπτύξετε αλγόριθμο που

      α) θα διαβάζει τα παραπάνω δεδομένα,

      Μονάδες 4

      β) θα εμφανίζει τη χώρα με τη μεγαλύτερη έκταση,

      Μονάδες 6

      γ) θα εμφανίζει τη χώρα με το μικρότερο πληθυσμό και

      Μονάδες 6

      δ) θα εμφανίζει το μέσο όρο του πληθυσμού των 15 χωρών της Ευρωπαϊκής ΄Ενωσης.

      Μονάδες 4

    ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ
    ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
    ΕΝΟΤΗΤΑ: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ – ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ – ΕΠΙΠΕΔΟ 2
    ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

    Θέμα 4οΘέμα 3ο 2004Θέμα 3ο 2005Θέμα 3οΘέμα 3οΘέμα 3οΘέμα 3οΘέμα 3ο
     



    • Εσπερ 2007

        Θέμα Δ

        Σε ένα πανεπιστημιακό τμήμα εισήχθησαν κατόπιν γενικών εξετάσεων 235 φοιτητές προερχόμενοι από την ΤΕΧΝΟΛΟΓΙΚΗ ή τη ΘΕΤΙΚΗ κατεύθυνση.

        Να αναπτύξετε αλγόριθμο, ο οποίος:

        α. Για καθένα από τους 235 φοιτητές διαβάζει:

        • • το ονοματεπώνυμό του,

        • • τα μόρια εισαγωγής του,

        • • την κατεύθυνσή του, η οποία μπορεί να είναι «ΤΕΧΝΟΛΟΓΙΚΗ» ή «ΘΕΤΙΚΗ», ελέγχοντας την εγκυρότητα εισαγωγής της

        και καταχωρίζει τα δεδομένα αυτά σε τρεις πίνακες.

        Μονάδες 4

        β. Υπολογίζει και εμφανίζει:

        1. το μέσο όρο των μορίων εισαγωγής των φοιτητών που προέρχονται από την ΤΕΧΝΟΛΟΓΙΚΗ κατεύθυνση.

        Μονάδες 5

        2. το ποσοστό των φοιτητών, που προέρχονται από την ΤΕΧΝΟΛΟΓΙΚΗ κατεύθυνση.

        Μονάδες 2

        3. την κατεύθυνση, από την οποία προέρχεται ο φοιτητής με τα περισσότερα μόρια εισαγωγής (να θεωρήσετε ότι δεν υπάρχει περίπτωση ισοβαθμίας).

        Μονάδες 5

        4. τα ονοματεπώνυμα των φοιτητών που προέρχονται από την ΤΕΧΝΟΛΟΓΙΚΗ κατεύθυνση, για τους οποίους τα μόρια εισαγωγής τους είναι περισσότερα από το μέσο όρο των μορίων εισαγωγής των φοιτητών που προέρχονται από την ΤΕΧΝΟΛΟΓΙΚΗ κατεύθυνση.

        Μονάδες 4

       



      • Σε έναν αγώνα δισκοβολίας συμμετέχουν 20 αθλητές. Κάθε αθλητής έκανε µόνο µία έγκυρη ρίψη που καταχωρείται ως επίδοση του αθλητή και εκφράζεται σε µέτρα. Να αναπτύξετε αλγόριθμο που

          α. να διαβάζει για κάθε αθλητή το όνοµα και την επίδοσή του,

          Μονάδες 5

          β. να ταξινομεί τους αθλητές ως προς την επίδοσή τους,

          Μονάδες 5

          γ. να εµφανίζει τα ονόµατα και τις επιδόσεις των τριών πρώτων αθλητών, αρχίζοντας από εκείνον µε την καλύτερη επίδοση,

          Μονάδες 5

          δ. να εμφανίζει τα ονόµατα και τις επιδόσεις των πέντε τελευταίων αθλητών, αρχίζοντας από εκείνον με την καλύτερη επίδοση.

          Μονάδες 5

          Σηµείωση: Να θεωρήσετε ότι δεν υπάρχουν αθλητές με την ίδια ακριβώς επίδοση.

         



        • Δίνεται πίνακας Α[Ν] ακέραιων και θετικών αριθμών, καθώς και πίνακας Β[Ν-1] πραγματικών και θετικών αριθμών.

            Να γραφεί αλγόριθμος, ο οποίος να ελέγχει αν κάθε στοιχείο Β[i] είναι ο μέσος όρος των στοιχείων Α[i] και Α[i+1], δηλαδή αν Β[i] = (Α[i] + Α[i+1])/2.

            Σε περίπτωση που ισχύει, τότε να εμφανίζεται το μήνυμα «Ο πίνακας Β είναι ο τρέχων μέσος του Α», διαφορετικά να εμφανίζεται το μήνυμα «Ο πίνακας Β δεν είναι ο τρέχων μέσος του Α».

            Για παράδειγμα:

            Έστω ότι τα στοιχεία του πίνακα Α είναι:

            1, 3, 5, 10, 15

            και ότι τα στοιχεία του πίνακα Β είναι:

            2, 4, 7.5, 12.5.

            Τότε ο αλγόριθμος θα εμφανίσει το μήνυμα «Ο πίνακας Β είναι ο τρέχων μέσος του Α», διότι 2 = (1+3)/2, 4=(3+5)/2, 7.5= (5+10)/2, 12.5=(10+15)/2.

           



          • Ημερ – Επαναλ 2006

              Θέμα Δ

              Στους προκριματικούς αγώνες ιππικού τριάθλου συμμετέχουν 16 αθλητές. Τα αγωνίσματα είναι: ιππική δεξιοτεχνία, υπερπήδηση εμποδίων και ελεύθερη ιππασία. Ο κάθε αθλητής βαθμολογείται ξεχωριστά σε κάθε ένα από τα τρία αγωνίσματα.

              Να σχεδιάσετε αλγόριθμο ο οποίος:

              α) καταχωρίζει σε πίνακα τις ονομασίες των τριών αγωνισμάτων, όπως αυτές δίνονται παραπάνω.

              Μονάδες 2

              β) διαβάζει για κάθε αθλητή όνομα, επίθετο, όνομα αλόγου με το οποίο αγωνίζεται και τους βαθμούς του σε κάθε αγώνισμα και θα καταχωρίζει τα στοιχεία σε πίνακες.

              Μονάδες 2

              γ) διαβάζει το όνομα και το επίθετο ενός αθλητή και θα εμφανίζει το όνομα του αλόγου με το οποίο αγωνίστηκε και τη συνολική του βαθμολογία στα τρία αγωνίσματα. Αν δεν υπάρχει ο αθλητής, θα εμφανίζει κατάλληλα διαμορφωμένο μήνυμα.

              Μονάδες 8

              δ) εμφανίζει την ονομασία του αγωνίσματος (ή των αγωνισμάτων) με το μεγαλύτερο «άνοιγμα βαθμολογίας». Ως «άνοιγμα βαθμολογίας» να θεωρήσετε τη διαφορά ανάμεσα στην καλύτερη και στη χειρότερη βαθμολογία του αγωνίσματος.

              Μονάδες 8

             



            • Σε ένα Εσπερινό Γυμνάσιο φοιτούν 80 μαθητές. Να γραφεί αλγόριθμος ο οποίος:

              α) Διαβάζει για κάθε μαθητή το ονοματεπώνυμό του, την τάξη του και τον τελικό βαθμό του και τα καταχωρεί σε μονοδιάστατους πίνακες, ελέγχοντας την ορθότητα εισαγωγής των δεδομένων σύμφωνα με τα παρακάτω:

              – Οι τάξεις είναι Α ή Β ή Γ.

              – Ο τελικός βαθμός είναι από 1 μέχρι και 20.

              β) Εμφανίζει τα ονόματα των μαθητών της Β τάξης που έχουν τελικό βαθμό μεγαλύτερο ή ίσο του 18,5.

              Μονάδες 2

              γ) Υπολογίζει και εμφανίζει το πλήθος των μαθητών κάθε τάξης.

              Μονάδες 3

              δ) Υπολογίζει και εμφανίζει το μέσο όρο των τελικών βαθμών των μαθητών της Γ τάξης.

              Μονάδες 3

              ε) Εμφανίζει ταξινομημένα κατά αλφαβητική σειρά τα ονοματεπώνυμα και τους αντίστοιχους τελικούς βαθμούς των μαθητών της Α τάξης.

              Μονάδες 7

             



            • Εσπερ – 2008

                Θέμα Γ

                Για την ανάδειξη του επταμελούς (7) Διοικητικού Συμβουλίου ενός Πολιτιστικού Συλλόγου υπάρχουν 20 υποψήφιοι. Να γράψετε αλγόριθμο ο οποίος:

                α) Διαβάζει τα ονόματα των υποψηφίων και τα αποθηκεύει σε πίνακα.

                (Μονάδες 4)

                β) Διαβάζει για κάθε υποψήφιο τον αριθμό των ψήφων που έλαβε και τον αποθηκεύει σε πίνακα.

                (Μονάδες 4)

                γ) Εμφανίζει τα ονόματα των εκλεγέντων μελών του Διοικητικού Συμβουλίου κατά φθίνουσα σειρά ψήφων (να θεωρηθεί ότι δεν υπάρχουν περιπτώσεις ισοψηφίας).

                (Μονάδες 6)

                δ) Διαβάζει το όνομα ενός υποψηφίου και ελέγχει αν ο συγκεκριμένος εκλέγεται ή όχι, εμφανίζοντας κατάλληλο μήνυμα.

                (Μονάδες 6)

               



              • ΘΕΜΑ Γ

                Ανατέθηκε σε μια περιβαλλοντική ομάδα να φτιάξει έναν χάρτη επικινδυνότητας πυρκαγιών για την οροσειρά του Ταϋγέτου. Ο χάρτης αυτός θα δείχνει σε ποιες περιοχές υπάρχει μεγάλη πιθανότητα πυρκαγιάς, σε ποιες μέτρια και σε ποιες χαμηλή. Για να μπορέσουν να κατασκευάσουν το χάρτη, θα πρέπει σε κάθε περιοχή να μετρήσουν τη μέση ταχύτητα του αέρα και την υγρασία. Για να χαρακτηριστεί μια περιοχή ως υψηλής επικινδυνότητας θα πρέπει η μέση ταχύτητα του αέρα να ξεπερνά τα 10 m/s και η υγρασία να είναι σε «χαμηλά επίπεδα». Για να χαρακτηριστεί ως μέτριας επικινδυνότητας θα πρέπει η μέση ταχύτητα του αέρα να ξεπερνά τα 10 m/s και η υγρασία να είναι σε «υψηλά επίπεδα». Τέλος, για να χαρακτηριστεί ως χαμηλής επικινδυνότητας θα πρέπει η μέση ταχύτητα του αέρα να είναι μικρότερη ή ίση των 10 m/s ανεξάρτητα από τα επίπεδα της υγρασίας. Να αναπτύξετε αλγόριθμο, ο οποίος:

                Γ1. Να διαβάζει για 10 περιοχές την υγρασία και τη μέση ταχύτητα του ανέμου.

                Μονάδες 4

                Γ2. Για κάθε περιοχή να εμφανίζει τα μηνύματα «Υψηλή επικινδυνότητα», «Μεσαία επικινδυνότητα» και «Χαμηλή επικινδυνότητα» ανάλογα με τους συνδυασμούς των συνδυασμών μέσης ταχύτητας και υγρασίας.

                Μονάδες 10

                Γ3. Να εμφανίζει το πλήθος των περιοχών με υψηλή επικινδυνότητα.

                Μονάδες 6

               



              • Σ’ ένα διαγωνισµό συµµετέχουν 5000 διαγωνιζόµενοι και εξετάζονται σε δύο µαθήµατα.

                  Να γράψετε αλγόριθµο που

                  1. να διαβάζει και να καταχωρίζει σε κατάλληλους πίνακες για κάθε διαγωνιζόµενο τον αριθµό µητρώου, το ονοµατεπώνυµο και τους βαθµούς που πήρε στα δύο µαθήµατα.

                  Οι αριθµοί µητρώου θεωρούνται µοναδικοί. Η βαθµολογική κλίµακα είναι από 0 έως και 100.

                  Μονάδες 4

                  2. να εµφανίζει κατάσταση επιτυχόντων µε την εξής µορφή:

                  Αριθ. Μητρώου Ονοµατεπώνυµο Μέσος Όρος

                  Επιτυχών θεωρείται ότι είναι αυτός που έχει µέσο όρο βαθµολογίας µεγαλύτερο ή ίσο του 60.

                  Μονάδες 4

                  να διαβάζει έναν αριθµό µητρώου και

                  α. σε περίπτωση που ο αριθµός µητρώου είναι καταχωρισµένος στον πίνακα, να εµφανίζεται ο αριθµός µητρώου, το ονοµατεπώνυµο, ο µέσος όρος βαθµολογίας και η ένδειξη «ΕΠΙΤΥΧΩΝ» ή «ΑΠΟΤΥΧΩΝ», ανάλογα µε τον µέσο όρο.

                  Μονάδες 8

                  β. σε περίπτωση που ο αριθµός µητρώου δεν είναι καταχωρισµένος στον πίνακα, να εµφανίζεται το µήνυµα «Ο αριθµός µητρώου δεν αντιστοιχεί σε διαγωνιζόµενο».

                  Μονάδες 4

                  Σηµείωση: Δεν απαιτείται έλεγχος εγκυρότητας καταχώρισης δεδοµένων.

                ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ
                Μ
                ΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

                ΕΝΟΤΗΤΑ: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ – ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ – ΕΠΙΠΕΔΟ 3
                ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

                Θέμα 3ο 2005Θέμα 3οΘέμα 3οΘέμα 3οΘέμα 3οΘέμα 4ο 2016 Νέο
                 



                • Για την εύρεση πόρων προκειμένου οι μαθητές της Δ΄ τάξης Εσπερινού Λυκείου να συμμετάσχουν σε εκδρομή οργανώνεται λαχειοφόρος αγορά.

                    Οι μαθητές του Λυκείου διαθέτουν λαχνούς στα σχολεία της περιοχής τους. Διακόσιοι μαθητές από δεκαπέντε διαφορετικά σχολεία αγόρασαν ο καθένας από έναν μόνο λαχνό. Μετά από κλήρωση ένας μαθητής κερδίζει τον πρώτο λαχνό.

                    Να γίνει τμήμα αλγορίθμου που

                    α) για κάθε μαθητή που αγόρασε λαχνό να εισάγει σε μονοδιάστατο πίνακα Α 200 θέσεων το επώνυμό του και στην αντίστοιχη θέση μονοδιάστατου πίνακα Β 200 θέσεων το όνομα του σχολείου του,

                    Μονάδες 3

                    β) να εισάγει σε μονοδιάστατο πίνακα Σ 15 θέσεων τα ονόματα όλων των σχολείων της περιοχής και στις αντίστοιχες θέσεις μονοδιάστατου πίνακα M 15 θέσεων τις ηλεκτρονικές διευθύνσεις των σχολείων,

                    Μονάδες 4

                    γ) να διαβάζει το επώνυμο του μαθητή, που κέρδισε τον πρώτο λαχνό,

                    Μονάδες 1

                    δ) χρησιμοποιώντας τον αλγόριθμο της σειριακής αναζήτησης να προσδιορίζει τη θέση του επωνύμου του τυχερού μαθητή στον πίνακα Α. Στη συνέχεια στον πίνακα Β να βρίσκει το όνομα του σχολείου που φοιτά,

                    Μονάδες 5

                    ε) λαμβάνοντας υπόψη το όνομα του σχολείου που φοιτά ο τυχερός μαθητής και χρησιμοποιώντας τον αλγόριθμο της σειριακής αναζήτησης να προσδιορίζει την θέση του σχολείου στον πίνακα Σ. Στη συνέχεια στον πίνακα M να βρίσκει τη διεύθυνση του ηλεκτρονικού ταχυδρομείου του σχολείου αυτού,

                    Μονάδες 5

                    στ) να εμφανίζει το επώνυμο του τυχερού μαθητή, το όνομα του σχολείου του και τη διεύθυνση του ηλεκτρονικού ταχυδρομείου του σχολείου του.

                    Μονάδες 2

                    Σημείωση:

                    Να θεωρήσετε ότι δεν υπάρχουν μαθητές με το ίδιο επώνυμο και ότι κάθε μαθητής αγόρασε έναν μόνο λαχνό.

                   



                  • Ημερ – Επαναλ 2008

                      Θέμα Γ

                      Μία Νομαρχία διοργάνωσε το 2008 σεμινάριο εθελοντικής δασοπυρόσβεσης, το οποίο παρακολούθησαν 500 άτομα. Η Πυροσβεστική Υπηρεσία ζήτησε στοιχεία σχετικά με την ηλικία, το φύλο και το μορφωτικό επίπεδο εκπαίδευσης κάθε εθελοντή, προκειμένου να εξαγάγει στατιστικά στοιχεία. Να γραφεί αλγόριθμος, ο οποίος:

                      α. διαβάζει για κάθε άτομο:

                      • το ονοματεπώνυμο,

                      • το έτος γέννησης (χωρίς να απαιτείται έλεγχος εγκυρότητας),

                      • το φύλο, με αποδεκτές τιμές το “Α” για τους άνδρες και το “Γ” για τις γυναίκες,

                      • το μορφωτικό επίπεδο εκπαίδευσης, με αποδεκτές τιμές “Π”, “Δ” ή “Τ”, που αντιστοιχούν σε Πρωτοβάθμια, Δευτεροβάθμια ή Τριτοβάθμια Εκπαίδευση και τα καταχωρίζει σε κατάλληλους μονοδιάστατους πίνακες.

                      (Μονάδες 6)

                      β. υπολογίζει και εμφανίζει το πλήθος των ατόμων με ηλικία μικρότερη των 30 ετών.

                      (Μονάδες 4)

                      γ. υπολογίζει και εμφανίζει το ποσοστό των γυναικών με επίπεδο Τριτοβάθμιας Εκπαίδευσης στο σύνολο των εθελοντριών.

                      (Μονάδες 5)

                      δ. εμφανίζει τα ονόματα των ατόμων με τη μεγαλύτερη ηλικία.

                      (Μονάδες 5)

                     



                    • Ημερ 2009

                        Θέμα Γ

                        Σε μια διαδρομή τρένου υπάρχουν 20 σταθμοί (σε αυτούς περιλαμβάνονται η αφετηρία και ο τερματικός σταθμός). Το τρένο σταματά σε όλους τους σταθμούς. Σε κάθε σταθμό επιβιβάζονται και αποβιβάζονται επιβάτες. Οι πρώτοι επιβάτες επιβιβάζονται στην αφετηρία και στον τερματικό σταθμό αποβιβάζονται όλοι οι επιβάτες. Να κατασκευάσετε αλγόριθμο, ο οποίος να διαχειρίζεται την κίνηση των επιβατών. Συγκεκριμένα:

                        Α. Να ζητάει από το χρήστη τον αριθμό των ατόμων που επιβιβάστηκαν σε κάθε σταθμό, εκτός από τον τερματικό, και να τον εισάγει σε πίνακα ΕΠΙΒ[19].

                        (Μονάδες 2)

                        Β. Να εισάγει σε πίνακα ΑΠΟΒ[19] τον αριθμό των ατόμων που αποβιβάστηκαν σε κάθε σταθμό, εκτός από τον τερματικό, ως εξής: Για την αφετηρία να εισάγει την τιμή μηδέν (0) και για τους υπόλοιπους σταθμούς να ζητάει από τον χρήστη τον αριθμό των ατόμων που αποβιβάστηκαν.

                        (Μονάδες 4)

                        Γ. Να δημιουργεί πίνακα ΑΕ[19], στον οποίο να καταχωρίζει τον αριθμό των επιβατών που βρίσκονται στο τρένο, μετά από κάθε αναχώρησή του.

                        (Μονάδες 7)

                        Δ. Να βρίσκει και να εμφανίζει τον σταθμό από τον οποίο το τρένο αναχωρεί με τον μεγαλύτερο αριθμό επιβατών. (Να θεωρήσετε ότι από κάθε σταθμό το τρένο αναχωρεί με διαφορετικό αριθμό επιβατών).

                        (Μονάδες 7)

                       



                      • Εσπερινών 2006

                          Θέμα Δ

                          Να αναπτύξετε έναν αλγόριθμο, ώστε:

                          α) Να διαβάζει το πλήθος των ασθενών ενός νοσοκομείου, το οποίο δεν μπορεί να δεχτεί περισσότερους από 500 ασθενείς.

                          (Μονάδες 2)

                          β) Για κάθε ασθενή να διαβάζει τις ημέρες νοσηλείας του, τον κωδικό του ασφαλιστικού του ταμείου και τη θέση νοσηλείας. Να ελέγχει την ορθότητα εισαγωγής των δεδομένων σύμφωνα με τα παρακάτω:

                          1. • οι ημέρες νοσηλείας είναι ακέραιος αριθμός μεγαλύτερος ή ίσος του 1.

                          2. • τα ασφαλιστικά ταμεία είναι 10 με κωδικούς από 1 μέχρι και 10.

                          3. • οι θέσεις νοσηλείας είναι Α ή Β ή Γ.

                          (Μονάδες 6)

                          γ) Να υπολογίζει και να εμφανίζει το μέσο όρο ημερών νοσηλείας των ασθενών στο νοσοκομείο.

                          (Μονάδες 2)

                          δ) Να υπολογίζει και να εμφανίζει για κάθε ασθενή το κόστος παραμονής που πρέπει να καταβάλει στο νοσοκομείο το ασφαλιστικό του ταμείο σύμφωνα με τις ημέρες και τη θέση νοσηλείας.

                          Το κόστος παραμονής στο νοσοκομείο ανά ημέρα και θέση νοσηλείας για κάθε ασθενή φαίνεται στον ακόλουθο πίνακα:

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                          Θέση Νοσηλείας

                          Κόστος παραμονής ανά ημέρα νοσηλείας για κάθε ασθενή

                          Α

                          125 €

                          Β

                          90 €

                          Γ

                          60 €

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                           

                          (Μονάδες 4)

                          ε) Να υπολογίζει και να εμφανίζει με τη χρήση πίνακα το συνολικό κόστος που θα καταβάλει το κάθε ασφαλιστικό ταμείο στο νοσοκομείο.

                          (Μονάδες 4)

                          στ) Να υπολογίζει και να εμφανίζει το συνολικό ποσό που οφείλουν όλα τα ασφαλιστικά ταμεία στο νοσοκομείο.

                          (Μονάδες 2)

                         



                        • Εσπ 2011

                            ΘΕΜΑ Γ

                            Ένα εμπορικό κατάστημα έχει καταγράψει τις μηνιαίες εισπράξεις του για τα έτη 2009 και 2010. Να γράψετε αλγόριθμο ο οποίος:

                            Γ1. Να διαβάζει τις μηνιαίες εισπράξεις για καθένα από τα δύο έτη και να τις καταχωρίζει σε αντίστοιχους μονοδιάστατους πίνακες.

                            Μονάδες 4

                            Γ2. Να υπολογίζει και να εμφανίζει τη μεγαλύτερη μηνιαία είσπραξη για κάθε έτος. Θεωρήστε ότι για κάθε έτος η τιμή αυτή είναι μοναδική.

                            Μονάδες 4

                            Γ3. Να εμφανίζει κατάλληλο μήνυμα στην περίπτωση που ο μήνας κατά τον οποίο σημειώθηκε η μεγαλύτερη μηνιαία είσπραξη ήταν ο ίδιος και για τα δύο έτη.

                            Μονάδες 4

                            Γ4. Να εμφανίζει τον μέσο όρο των μηνιαίων εισπράξεων για κάθε έτος.

                            Μονάδες 4

                            Γ5. Να υπολογίζει και να εμφανίζει το πλήθος των μηνών του έτους 2009 κατά τους οποίους η μηνιαία είσπραξη ήταν μεγαλύτερη από αυτή του αντίστοιχου μήνα του έτους 2010.

                            Μονάδες 4

                           



                            Το Εθνικό Αρχαιολογικό Μουσείο, το οποίο γιορτάζει τα 150 χρόνια από τη θεμελίωσή του, θέλει να αναπτύξει μία εφαρμογή για την προβολή των εκθεμάτων του.

                            Να αναπτύξετε ένα πρόγραμμα σε ΓΛΩΣΣΑ, το οποίο:

                            Δ1. Να περιέχει κατάλληλο τμήμα δηλώσεων.

                            Μονάδες 2

                            Δ2. Να διαβάζει 1.000.000 ακέραιους κωδικούς εκθεμάτων στον πίνακα ΚΩΔ και 1.000.000 ονομασίες εκθεμάτων στον πίνακα ΕΚΘ.

                            Μονάδες 2

                            Δ3. Να ταξινομεί, κατά αύξουσα σειρά, τους πίνακες με βάση τον κωδικό του εκθέματος.

                            Μονάδες 8

                            Δ4. Να ζητά από τον χρήστη την εισαγωγή ενός κωδικού και, εφόσον αυτός αντιστοιχεί σε έκθεμα, να εμφανίζει την ονομασία του εκθέματος. Εάν το έκθεμα δεν υπάρχει, να εμφανίζει το μήνυμα: «Δεν υπάρχει». Η διαδικασία να ολοκληρώνεται, όταν εισαχθεί ο αριθμός 0.

                            Μονάδες 8

                            (Σημείωση: Να θεωρήσετε ότι οι κωδικοί όλων των εκθεμάτων είναι διαφορετικοί μεταξύ τους).

                            ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ
                            Μ
                            ΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

                            ΕΝΟΤΗΤΑ: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ – ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ – ΕΠΙΠΕΔΟ 4
                            ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

                            Άλμα εις μήκος Θέμα 3οΘέμα 3οΘέμα 3οΘέμα 4ο Ημερ 2010ΘέμαComeniusComenius



                            • ΘΕΜΑ Γ

                              Σε κάποιο σχολικό αγώνα, για το άθλημα «Άλμα εις μήκος» καταγράφεται για κάθε αθλητή η καλύτερη έγκυρη επίδοσή του. Τιμής ένεκεν, πρώτος αγωνίζεται ο περσινός πρωταθλητής. Η Επιτροπή του αγώνα διαχειρίζεται τα στοιχεία των αθλητών που αγωνίστηκαν.

                              Να γράψετε αλγόριθμο ο οποίος:

                              Γ1. Να ζητάει το ρεκόρ αγώνων και να το δέχεται, εφόσον είναι θετικό και μικρότερο των 10 μέτρων.

                              Μονάδες 2

                              Γ2. Να ζητάει τον συνολικό αριθμό των αγωνιζομένων και για κάθε αθλητή το όνομα και την επίδοσή του σε μέτρα με τη σειρά που αγωνίστηκε.

                              Μονάδες 4

                              Γ3. Να εμφανίζει το όνομα του αθλητή με τη χειρότερη επίδοση.

                              Μονάδες 4

                              Γ4. Να εμφανίζει τα ονόματα των αθλητών που κατέρριψαν το ρεκόρ αγώνων. Αν δεν υπάρχουν τέτοιοι αθλητές, να εμφανίζει το πλήθος των αθλητών που πλησίασαν το ρεκόρ αγώνων σε απόσταση όχι μεγαλύτερη των 50 εκατοστών.

                              Μονάδες 6

                              Γ5. Να βρίσκει και να εμφανίζει τη θέση που κατέλαβε στην τελική κατάταξη ο περσινός πρωταθλητής.

                              Μονάδες 4

                              Σημείωση: Να θεωρήσετε ότι κάθε αθλητής έχει έγκυρη επίδοση και ότι όλες οι επιδόσεις των αθλητών που καταγράφονται είναι διαφορετικές μεταξύ τους.

                             



                            • Σε κάποια χώρα της Ευρωπαϊκής Ένωσης διεξάγονται εκλογές για την ανάδειξη των µελών του Ευρωπαϊκού Κοινοβουλίου. Θεωρήστε ότι µετέχουν 15 συνδυασµοί κοµµάτων, οι οποίοι θα µοιραστούν 24 έδρες σύµφωνα µε το ποσοστό των έγκυρων ψηφοδελτίων που έλαβαν. Κόµµατα που δεν συγκεντρώνουν ποσοστό έγκυρων ψηφοδελτίων τουλάχιστον ίσο µε το 3% του συνόλου των έγκυρων ψηφοδελτίων δεν δικαιούνται έδρα. Για κάθε κόµµα, εκτός του πρώτου κόµµατος, ο αριθµός των εδρών που θα λάβει υπολογίζεται ως εξής: Το ποσοστό των έγκυρων ψηφοδελτίων πολλαπλασιάζεται επί 24 και στη συνέχεια το γινόµενο διαιρείται µε το άθροισµα των ποσοστών όλων των κοµµάτων που δικαιούνται έδρα. Το ακέραιο µέρος του αριθµού που προκύπτει είναι ο αριθµός των εδρών που θα λάβει το κόµµα. Το πρώτο κόµµα λαµβάνει τις υπόλοιπες έδρες. Να γράψετε αλγόριθµο ο οποίος:

                              α. να διαβάζει και να αποθηκεύει σε µονοδιάστατους πίνακες τα ονόµατα των κοµµάτων και τα αντίστοιχα ποσοστά των έγκυρων ψηφοδελτίων τους.

                              Μονάδες 4

                              β. να εκτυπώνει τα ονόµατα και το αντίστοιχο ποσοστό έγκυρων ψηφοδελτίων των κοµµάτων που δεν έλαβαν έδρα.

                              Μονάδες 4

                              γ. να εκτυπώνει το όνοµα του κόµµατος µε το µεγαλύτερο ποσοστό έγκυρων ψηφοδελτίων.

                              Μονάδες 4

                              δ. να υπολογίζει και να εκτυπώνει το άθροισµα των ποσοστών όλων των κοµµάτων που δικαιούνται έδρα.

                              Μονάδες 4

                              ε. να εκτυπώνει τα ονόµατα των κοµµάτων που έλαβαν έδρα και τον αντίστοιχο αριθµό των εδρών τους.

                              Μονάδες 4

                              Παρατηρήσεις: α) Υποθέτουµε ότι δεν υπάρχουν δύο κόµµατα που να έχουν το ίδιο ποσοστό έγκυρων ψηφοδελτίων.

                              β) Μπορείτε να χρησιµοποιήσετε τη συνάρτηση Α_Μ(x) που επιστρέφει το ακέραιο µέρος του πραγµατικού αριθµού x.

                              γ) Τα ποσοστά να θεωρηθούν επί τοις εκατό (%).

                             



                            • ΘΕΜΑ Δ

                              Tα δεδομένα (κείμενο, εικόνα, ήχος, κ.λ.π.), κατά τη μετάδοσή τους μέσω ενσύρματων ή ασύρματων καναλιών επικοινωνίας, αλλοιώνονται λόγω του θορύβου που χαρακτηρίζει κάθε κανάλι. Ο τρόπος προστασίας των δεδομένων μετάδοσης είναι ο ακόλουθος: Για κάθε bit (ακέραιος με τιμή 0 ή 1), που ο πομπός θέλει να στείλει, μεταδίδει μια λέξη, που αντιστοιχεί σε πίνακα ΜΕΤΑΔΟΣΗ[31] με όλες τις τιμές του ταυτόσημες με το προς μετάδοση bit, δηλαδή, εάν πρόκειται να σταλεί το bit 1, τότε η λέξη που μεταδίδεται είναι η 11..1 μήκους 31 bits, ενώ αν πρόκειται να σταλεί το bit 0, τότε η λέξη που μεταδίδεται είναι η 00..0, μήκους 31 bits. Ο δέκτης λαμβάνει λέξη μήκους 31 bits, τα οποία τοποθετούνται σε πίνακα ΛΗΨΗ[31]. Έχουμε «ΛΑΝΘΑΣΜΕΝΗ ΛΗΨΗ», εάν υπάρχει τουλάχιστον ένα στοιχείο του πίνακα ΛΗΨΗ[31] με διαφορετική τιμή από αυτήν του αντίστοιχου στοιχείου του πίνακα ΜΕΤΑΔΟΣΗ[31]. Εάν το πλήθος των 1 του πίνακα ΛΗΨΗ[31] είναι μεγαλύτερο από το πλήθος των 0, τότε ο δέκτης αποφασίζει ότι ο πομπός έστειλε 1, ενώ σε αντίθετη περίπτωση ο δέκτης αποφασίζει ότι ο πομπός έστειλε 0. Σε κάθε περίπτωση, αν περισσότερα από τα μισά των 31 bits της λέξης μετάδοσης έχουν αλλοιωθεί, τότε ο δέκτης θα έχει πάρει «ΛΑΝΘΑΣΜΕΝΗ ΑΠΟΦΑΣΗ». Να γραφεί Αλγόριθμος σε ψευδογλώσσα, ο οποίος να κάνει τα εξής:

                              Δ1. Για κάθε τιμή ποιότητας του καναλιού, που χαρακτηρίζεται από ακεραίους από 1 έως και 10, πραγματοποιούνται το πολύ 100.000 διαφορετικές προσπάθειες μετάδοσης-λήψης και διόρθωσης λαθών. Εάν όμως ληφθούν 100 λανθασμένες αποφάσεις, τότε να διακόπτεται η διαδικασία για το συγκεκριμένο κανάλι.

                              Μονάδες 3

                              Δ2. Σε κάθε προσπάθεια μετάδοσης-λήψης και διόρθωσης λαθών να πραγματοποιούνται οι ακόλουθες ενέργειες:

                              α. Να διαβάζει (χωρίς έλεγχο εγκυρότητας των τιμών τους) τη μεταδοθείσα λέξη, καθώς και τη ληφθείσα λέξη, και να ελέγχει, εάν αυτές ταυτίζονται.

                              β. Να διορθώνει τη ληφθείσα λέξη στο δέκτη, βάσει της παραπάνω περιγραφής του αλγορίθμου.

                              γ. Να εμφανίζει μήνυμα «ΛΑΝΘΑΣΜΕΝΗ ΑΠΟΦΑΣΗ», αν το bit, που εμφανίζεται συχνότερα στον πίνακα ΛΗΨΗ[31], είναι διαφορετικό από το bit που έχει μεταδοθεί.

                              Μονάδες 9

                              Δ3. α. Να αποθηκεύει σε πίνακα ΛΑΘΗΑΠΟΦ[10] το ποσοστό των λανθασμένων αποφάσεων και σε πίνακα ΛΑΘΗΛΗΨ[10] το ποσοστό των λανθασμένων λήψεων.

                              β. Να εμφανίζει συγκεντρωτικά τα ποσοστά των λανθασμένων αποφάσεων και λανθασμένων λήψεων στο δέκτη.

                              Μονάδες 8

                             



                            • ΘΕΜΑ Γ

                              Ο σύλλογος γονέων και κηδεμόνων μιας περιοχής θέλει να διοργανώσει μία πολιτιστική εκδήλωση. Για το σκοπό αυτό ζητά από κάθε σχολείο της περιοχής να προσφέρει κάποιο χρηματικό ποσό για την πραγματοποίησή της. Κάθε σχολείο έχει τη δυνατότητα να επικοινωνεί περισσότερες από μία φορές με το σύλλογο και να τροποποιεί την προσφορά του. Να αναπτύξετε αλγόριθμο σε ψευδογλώσσα, ο οποίος:

                              Γ1. Να θεωρεί δεδομένο ένα πίνακα Σ[100] που περιέχει τα ονόματα των 100 σχολείων της περιοχής και να δημιουργεί πίνακα Π[100] που θα περιέχει τις αντίστοιχες χρηματικές προσφορές από κάθε σχολείο. Αρχικά να τοποθετηθεί σε κάθε στοιχείο του πίνακα Π[100] την τιμή -1.

                              Μονάδες 3

                              Γ2. α) Να διαβάζει το όνομα ενός σχολείου και να το αναζητά στον πίνακα Σ.

                              (μονάδες 4)

                              β) Να εμφανίζει το μήνυμα «Άγνωστο», όταν το σχολείο δεν βρεθεί. Όταν το σχολείο βρεθεί, να σταματά την αναζήτηση, να διαβάζει τη χρηματική προσφορά του σχολείου και να την τοποθετεί στην αντίστοιχη θέση του πίνακα Π. (Όταν δοθεί η τιμή 0, σημαίνει ότι το σχολείο δεν μπορεί να προσφέρει χρήματα, δηλ. έδωσε μηδενική προσφορά). Όταν δεν είναι η πρώτη φορά που δίνει προσφορά τότε να εμφανίζει το μήνυμα «ΤΡΟΠΟΠΟΙΗΣΗ ΠΡΟΣΦΟΡΑΣ» και να αντικαθιστά την προηγούμενη προσφορά του με τη νέα. (μονάδες 6)

                              Μονάδες 10

                              Γ3. Να επαναλαμβάνονται οι ενέργειες που περιγράφονται στο ερώτημα Γ2, μέχρις ότου όλα τα σχολεία να δώσουν τουλάχιστον μία προσφορά.

                              Μονάδες 3

                              Γ4. Να εμφανίζει: α) το συνολικό χρηματικό ποσό που έχει συγκεντρωθεί, β) το πλήθος των σχολείων που έδωσαν μηδενική προσφορά, γ) το πλήθος των τροποποιήσεων που έγιναν στις προσφορές.

                              Μονάδες 4

                             

                            ΘΕΜΑ ∆

                            Το ράλλυ Βορείων Σποράδων είναι ένας αγώνας ιστοπλοΐας ανοικτής θάλασσας που γίνεται κάθε χρόνο. Στην τελευταία διοργάνωση συμμετείχαν 35 σκάφη που διαγωνίστηκαν σε διαδρομή συνολικής απόστασης 70 μιλίων. Κάθε σκάφος ανήκει σε μια από τις κατηγορίες C1, C2, C3. Επειδή στον αγώνα συμμετέχουν σκάφη διαφορετικών δυνατοτήτων, η κατάταξη δεν προκύπτει από τον «πραγματικό» χρόνο τερματισμού αλλά από ένα «σχετικό» χρόνο, που υπολογίζεται διαιρώντας τον «πραγματικό» χρόνο του σκάφους με τον «ιδανικό». Ο ιδανικός χρόνος είναι διαφορετικός για κάθε σκάφος και προκύπτει πολλαπλασιάζοντας την απόσταση της διαδρομής με τον δείκτη GPH του σκάφους. Ο δείκτης GPH αντιπροσωπεύει τον ιδανικό χρόνο που χρειάζεται το σκάφος για να καλύψει απόσταση ενός μιλίου.

                            Να κατασκευάσετε αλγόριθμο ο οποίος

                            ∆1.  Να ζητάει για κάθε σκάφος:

                            – το όνομά του
                            – την κατηγορία του ελέγχοντας την ορθή καταχώρηση
                            – τον χρόνο (σε δευτερόλεπτα) που χρειάστηκε για να τερματίσει
                            – τον δείκτη GPH (σε δευτερόλεπτα).

                            Μονάδες 4

                            ∆2.  Να υπολογίζει τον σχετικό χρόνο κάθε σκάφους.

                            Μονάδες 5

                            ∆3.  Να εμφανίζει την κατηγορία στην οποία ανήκουν τα περισσότερα σκάφη.

                            Μονάδες 6

                            ∆4.  Να εμφανίζει για κάθε κατηγορία καθώς και για την γενική κατάταξη τα ονόματα των σκαφών που κερδίζουν μετάλλιο. (Μετάλλια απονέμονται στους 3 πρώτους κάθε κατηγορίας και στους 3 πρώτους της γενικής κατάταξης).

                            Μονάδες 5

                            Σημείωση: Να θεωρήσετε ότι κάθε κατηγορία έχει διαφορετικό αριθμό σκαφών και τουλάχιστον τρία σκάφη.

                             

                            2010 Ημερήσια Επ

                            ΘΕΜΑ Δ

                            Ερευνητές που ασχολούνται με μοντέλα προσομοίωσης εξάπλωσης επιδημιών χρησιμοποιούν για τις μελέτες τους ένα αριθμητικό πίνακα Μ[5000]. Κάθε κελί του πίνακα αυτού αντιπροσωπεύει ένα άτομο σε μια περιοχή 5.000 κατοίκων στην οποία υπάρχουν εστίες μιας συγκεκριμένης μολυσματικής ασθένειας (επιδημίας). Από σύμβαση η τιμή μηδέν 0 σε ένα κελί αντιπροσωπεύει ένα υγιές άτομο, ενώ η τιμή -1 αντιπροσωπεύει ένα άτομο που έχει τη συγκεκριμένη ασθένεια (μολυσμένο άτομο). Κάθε άτομο έρχεται σε επαφή με τα γειτονικά του και η ασθένεια μπορεί να μεταδοθεί από τον ένα στον άλλο. (Γειτονικά χαρακτηρίζονται δύο άτομα, όταν τα κελιά του πίνακα που τα αντιπροσωπεύουν έχουν μια κοινή πλευρά).

                            Θεωρήστε ότι δίνεται ο πίνακας Μ που περιέχει ήδη έναν αριθμό μολυσμένων ατόμων. Να υλοποιήσετε αλγόριθμο ο οποίος:

                            Δ1. Υπολογίζει και εμφανίζει με κατάλληλο μήνυμα τον συνολικό αριθμό των μολυσμένων ατόμων που υπάρχουν στο σύνολο του πληθυσμού.

                            Μονάδες 4

                            Δ2. Αποθηκεύει σε κάθε κελί του πίνακα Μ που αντιπροσωπεύει ένα υγιές άτομο έναν αριθμό ο οποίος δείχνει με πόσα μολυσμένα άτομα γειτονεύει το υγιές.

                            Μονάδες 8

                            Δ3. Βρίσκει αν υπάρχει έστω και μία «σημαντική» εστία μόλυνσης. Αν υπάρχει, εμφανίζει το μήνυμα «Υπάρχει σημαντική εστία μόλυνσης» μαζί με τη θέση του πρώτου κελιού της εστίας. Αν δεν υπάρχει, εμφανίζει το μήνυμα «Δεν υπάρχει σημαντική εστία μόλυνσης». (Μια εστία μόλυνσης χαρακτηρίζεται σημαντική, όταν δύο ή περισσότερα μολυσμένα άτομα βρίσκονται σε συνεχόμενα γειτονικά κελιά).

                            Μονάδες 8

                             



                              2016 Ημερήσια Νέο

                              ΘΕΜΑ Γ

                              Στο πλαίσιο μιας μελέτης, ένας φιλόλογος θέλει να ελέγξει τη χρήση ενός δείγματος εκατό (100) ναυτικών λέξεων σε σύγχρονα νεοελληνικά κείμενα. Για τον σκοπό αυτό:

                              Γ1. Να κατασκευάσετε υποπρόγραμμα, με όνομα ΑΝΑΖΗΤΗΣΗ, το οποίο να δέχεται

                               

                              ένα μονοδιάστατο πίνακα χαρακτήρων Π[100],

                              μια ακέραια μεταβλητή Ν,

                              μια αλφαριθμητική μεταβλητή Χ

                              και να επιστρέφει

                              μια λογική μεταβλητή ΒΡΕΘΗΚΕ και

                              μια ακέραια μεταβλητή ΘΕΣΗ.

                               

                              Το υποπρόγραμμα να αναζητά μια λέξη, την τιμή της μεταβλητής Χ στις θέσεις 1 έως Ν του πίνακα Π. Αν βρεθεί η λέξη, το υποπρόγραμμα να επιστρέφει την τιμή ΑΛΗΘΗΣ και τη θέση που βρέθηκε. Αν δεν βρεθεί, να επιστρέφει την τιμή ΨΕΥΔΗΣ και την τιμή 0.

                              Μονάδες 5

                              Στη συνέχεια να κατασκευάσετε κύριο πρόγραμμα το οποίο :

                              Γ2. Να ζητά 100 ναυτικές λέξεις και να τις καταχωρίζει σε πίνακα ΛΕΞΕΙΣ[100]. Κάθε λέξη που δίνεται να τη δέχεται, μόνο εφόσον ελέγξει ότι δεν έχει ήδη καταχωριστεί στον πίνακα. Ο έλεγχος να γίνεται με τη χρήση του υποπρογράμματος ΑΝΑΖΗΤΗΣΗ.

                              Μονάδες 5

                              Γ3. Να ζητά, με τη σειρά, τις λέξεις ενός νεοελληνικού κειμένου. Η εισαγωγή να τερματίζεται όταν δοθεί ως λέξη η ακολουθία χαρακτήρων «ΤΕΛΟΣ_ΚΕΙΜΕΝΟΥ».

                              Μονάδες 2

                              Γ4. Να εμφανίζει τις σπανιότερες ναυτικές λέξεις του δείγματος που υπάρχουν στο νεοελληνικό κείμενο, δηλαδή τις λέξεις με τη μικρότερη συχνότητα εμφάνισης, χρησιμοποιώντας κατάλληλα το υποπρόγραμμα ΑΝΑΖΗΤΗΣΗ.

                              Μονάδες 8

                               



                              • ΘΕΜΑ Δ Ημερ 2013

                                Σε ένα πρόγραμμα ανταλλαγής μαθητών Comenius συμμετέχουν μαθητές από δυο χώρες: Ελλάδα (EL) και Ισπανία (ES). Οι μαθητές αυτοί καλούνται να απαντήσουν σε μια ερώτηση όπου οι δυνατές απαντήσεις είναι:

                                1. Πολύ συχνά 2. Συχνά 3. Αρκετές φορές 4. Σπάνια 5. Ποτέ

                                Στην πρώτη φάση επεξεργασίας της ερώτησης πρέπει να καταγραφούν οι απαντήσεις από κάθε χώρα και να μετρήσουν για κάθε αριθμό απάντησης πόσες φορές υπάρχει, με σκοπό να αναφέρουν για κάθε χώρα, ποια απάντηση είχε τα μεγαλύτερα ποσοστά.

                                Για να βοηθήσετε στην επεξεργασία να αναπτύξετε πρόγραμμα σε ΓΛΩΣΣΑ το οποίο:

                                Δ1.

                                α. Να περιέχει τμήμα δηλώσεων.

                                β. Να δημιουργεί δύο πίνακες EL[5] και ES[5] και να καταχωρίζει σε αυτούς την τιμή 0 σε όλα τα στοιχεία τους.

                                Μονάδες 2

                                Δ2. Για κάθε μαθητή να διαβάζει το όνομα της χώρας του και τον αριθμό της απάντησής του. Οι δυνατές τιμές για τη χώρα είναι: EL, ES και για την απάντηση 1, 2, 3, 4, 5. Η κάθε απάντηση θα πρέπει να προσμετράται σε έναν από τους δύο πίνακες EL[5], ES[5] ανάλογα με τη χώρα και στο αντίστοιχο στοιχείο. Δηλαδή, αν δοθούν για τιμές οι ES και 4, τότε θα πρέπει στο 4ο στοιχείο του πίνακα ES[5] να προστεθεί μια ακόμα καταχώριση. (Δεν απαιτείται έλεγχος εγκυρότητας τιμών).

                                Μονάδες 5

                                Δ3. Η προηγούμενη διαδικασία εισαγωγής δεδομένων και καταχώρισης απαντήσεων θα ελέγχεται από την ερώτηση «για Διακοπή της εισαγωγής πατήστε Δ ή δ», που θα εμφανίζεται, και ο χρήστης θα πρέπει να δώσει το χαρακτήρα Δ ή δ για να σταματήσει την επαναληπτική διαδικασία.

                                Μονάδες 3

                                Δ4. Στο τέλος για κάθε χώρα να εμφανίζει ποιος αριθμός απάντησης είχε το μεγαλύτερο ποσοστό, καθώς και το ποσοστό αυτό. Για την υλοποίηση αυτού του ερωτήματος θα χρησιμοποιήσετε δυο φορές το υποπρόγραμμα MΕΓ_ΠΟΣ που θα κατασκευάσετε στο ερώτημα Δ5. Θεωρούμε ότι για κάθε χώρα τα ποσοστά των απαντήσεων είναι διαφορετικά μεταξύ τους και δεν υπάρχει περίπτωση ισοβαθμίας.

                                Μονάδες 3

                                Δ5. Να αναπτύξετε το υποπρόγραμμα ΜΕΓ_ΠΟΣ το οποίο:

                                1. Να δέχεται έναν πίνακα ακεραίων 5 θέσεων.

                                2. Να βρίσκει το μεγαλύτερο στοιχείο του πίνακα και σε ποια θέση βρίσκεται.

                                3. Να βρίσκει το ποσοστό που κατέχει το μεγαλύτερο στοιχείο σε σχέση με το άθροισμα όλων των στοιχείων του πίνακα.

                                4. Να επιστρέφει στο κυρίως πρόγραμμα το ποσοστό αυτό, καθώς και την θέση στην οποία βρίσκεται.

                                Θεωρήστε ότι όλες οι τιμές των πινάκων είναι διαφορετικές και ότι για κάθε χώρα υπάρχει τουλάχιστον μια απάντηση στην ερώτηση.

                                Μονάδες 7

                              Permanent link to this article: http://pervolischool.edu.gr/computer-science/algorithms/%ce%b8%ce%ad%ce%bc%ce%b1%cf%84%ce%b1-%cf%80%ce%b1%ce%bd%ce%b5%ce%bb%ce%bb%ce%b7%ce%bd%ce%af%cf%89%ce%bd-%ce%b1%ce%b5%cf%80%cf%80/%cf%80%ce%b1%ce%bd%ce%b5%ce%bb%ce%bb%ce%ae%ce%bd%ce%b9%ce%b5%cf%82-%ce%b1%ce%b5%cf%80%cf%80-%cf%80%ce%af%ce%bd%ce%b1%ce%ba%ce%b5%cf%82/